

43 good reasons to adopt ADS

In addition to the common features an aircraft design software must have, ADS has the following specificities:

Foreword: buying a modeling tool is an investment that can save you a lot of money

All-in-One: Module based software

- 1. Module: CAD \rightarrow Unique toolset to generate exact geometry, quickly and efficiently
- 2. Module: Reverse Engineering \rightarrow To do an extremely detailed analysis of existing aircraft
- 3. Module: Design Level 1 \rightarrow To check, tune specifications
- 4. Module: Design \rightarrow To define the best configuration to fulfill the requirements
- 5. Module: Performance Analysis \rightarrow To compute the performance for different flight conditions
- 6. Module: Dynamic Stability \rightarrow To model the dynamic behavior of the aircraft
- 7. Module: Cost Analysis → To estimate R&D, manufacturing, operating costs, market price and breakeven point.
- 8. Module: Lift distribution \rightarrow To optimize the wing planform for safety and performance

Set of optimization tools

- 9. Aerodynamics \rightarrow Set of tools to select the best airfoils and wing planform
- 10. Powerplant \rightarrow List of engine candidates to fulfill the power requirement
- 11. Multiple Runs \rightarrow Computations carried out in sequence to reach the best configuration
- 12. 3D Geometry \rightarrow Unique set of features to optimize geometry
- 13. Design constraints \rightarrow Automatically controls results to meet different types of constraints

Integrated expertise

- 14. Level of stability \rightarrow Provides the user some tips to improve stability
- 15. Tracks changes \rightarrow Displays only results that have changed from one run to the next
- 16. Analyzes the results \rightarrow Displays qualitative analysis of results
- 17. Checks compliance with regulation \rightarrow Checks and informs if out of the limits of regulation
- 18. Tire selection \rightarrow Selects tire size in function of ground run operation
- 19. Airfoil selection \rightarrow Selects the best airfoil for the specified flight condition
- 20. Comparative analysis \rightarrow Compares the airplane with its competitors on different criteria
- 21. Aircraft Structure \rightarrow Displays structural parts to check for interference between components
- 22. Occupants \rightarrow Displays occupants to check cabin volume
- 23. Systems \rightarrow Displays systems to check the available volume reserved for them
- 24. Checks interference between components \rightarrow Checks and warns if there is interference
- 25. Checks CG Range \rightarrow Checks the CG position for all load cases

Toolbox

- 26. Digitizer \rightarrow Digitizes any curve to retrieve the coordinates of the points that were used to draw it
- 27. Glide Polar Analyzer \rightarrow Analyzes the drag polar of a (motor)glider

Tools

- 28. Aerodynamics / Zero Lift Drag \rightarrow Sensitivity analysis in drag generation
- 29. Cost Analysis / Breakeven Point → Sensitivity analysis in breakeven point determination
- 30. Cost Analysis / RDTE & Manufacturing → Sensitivity analysis on RDTE & manufacturing costs
- 31. Mass \rightarrow Sensitivity analysis on mass estimation
- 32. Standard Atmosphere \rightarrow Lists the characteristics of the standard atmosphere at a given altitude

Database

33. Database \rightarrow Airplanes, Engines, Airfoils, Fuels, Batteries, Tires, Materials

Export Functions

- 34. Airplane Report \rightarrow Airplane report available in .doc, .txt, .csv file format
- 35. 3D-Geometry \rightarrow 3D Geometry may be exported in .stl file format
- 36. Graphs \rightarrow Graphs are saved in .bmp, .pdf, .png file format
- 37. Tables \rightarrow Tables are saved in .csv file format

Customized software

- 38. Add new modules \rightarrow Great flexibility of the software
- 39. Frequent new releases \rightarrow Extremely high responsiveness on the part of OAD

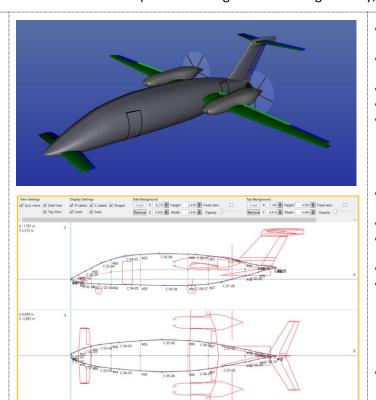
Technical assistance

- 40. Getting started with the software \rightarrow OAD assists the customer getting started with ADS
- 41. Technical documentation → Technical notes and videos accessible directly from the software
- 42. Technical support \rightarrow OAD may assist the customer at any time

References

43. ADS for everyone → Customers from all horizons: small, medium and large companies, individuals and universities

Foreword: buying a modeling tool is an investment that can save you a lot of money

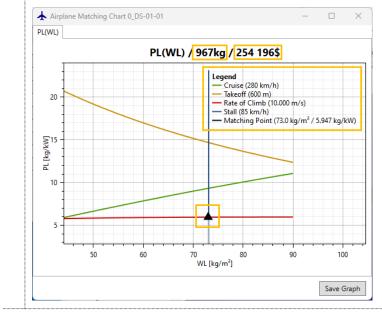

The engineer needs to use modeling tools like aircraft design software to make the best design choices.

Modeling systems has become an invaluable tool for engineers looking to optimize them. By deploying precise models, it becomes possible to analyze their behavior, predict their performance and identify areas for improvement.

By using the models, engineers can understand how each component interacts with others, how inputs affect outputs, and how changing one element can influence the entire system. This in-depth understanding is essential to identify weak points, inefficiencies and opportunities for optimization.

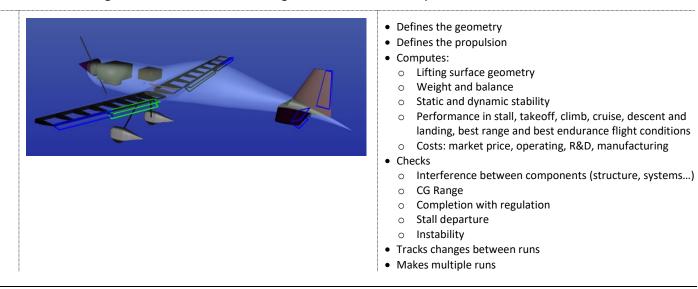
Systems modeling offers the possibility to simulate and test alternative scenarios without implementing them directly in reality. This makes it possible to explore different configurations and solutions while limiting costs. Using these simulations, engineers can evaluate each option, facilitating the decision-making process for system optimization.

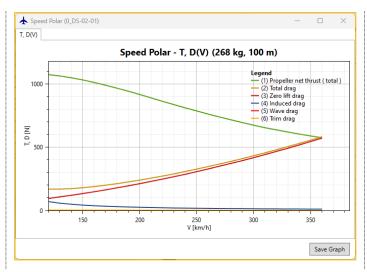
All-in-One: Module based software


- 1. Module: CAD \rightarrow Unique toolset to generate exact geometry, quickly and efficiently
 - To be used to generate a new design or reproduce an existing airplane
 - Bodies define from longitudinal control lines and control stations, based on conics
 - Lifting surfaces define from airfoil geometry
 - Conics defined from Conic Shape Parameter (CSP)
 - Operation on 3D-shapes:
 - \circ Body lofting
 - o Compute volume, wetted area
 - Stretch shapes
 - o Align sections, force section to circular shape...
 - Non-linear variation of control station offset and vertical position
 - Non-linear variation of conic Shape Parameters
 - Generate plots: volume, wetted area, cross section area (area rule)
 - Geometry analysis and optimization (tangent continuity...)
 - Representation of internal components:
 - Occupants
 - Payload
 - Systems
 - Tanks
 - o Gears
 - Export function (stl file)

2. Module: Reverse Engineering \rightarrow To do an extremely detailed analysis of existing aircraft

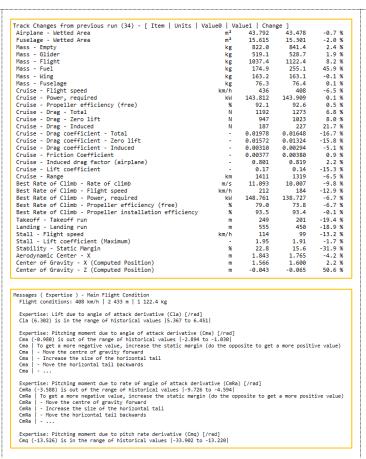
			0	DRE-01-01*				
Summary	Wing	Horizonta	I Tail Vertic	al Tail Fuselage	Powe	erplant	Landing Gear	Systems
Mass	Stability	Cruise	Best Rate of Cl	limb Takeoff	Stall	Quality	Statistics	Notes
QUALITY								
Symbols								
+ : best plane								
- : Worst plane								
AERODYNAMI	CS							
Friction coeffic	ients (-) - (Cruise						
0.00167 0			0.04	4659			0.00426 -	
+						Ce	essna-210-G	
-					PIUMA AL	MERICO-12-	000ELECTR	
Aerodynamic e	fficiency [Cf	f(limit) / Cf] (%) - Cruise					
8.9	0		209.2				79.8 %	
+						Ce	essna-210-G	
					PIUMA AL	MERICO-12-	000ELECTR	
Flat plate area								
0.051 0			1.719				0.156 m²	
+							A 311-02-01	
-						Edgle	y-Optica-01*	
Flat plate widt								
0.226 0			1.311				0.395 m	
+						0CE	A 311-02-01	


3. Module: Design Level 1 \rightarrow To check, tune specifications

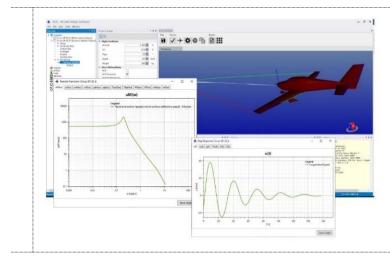

- Geometric analysis
- Performance analysis
- Weight breakdown
- Weight and balance
- Aerodynamic efficiency analysis
- Mass efficiency analysis
- Propulsion efficiency analysis
- Comparative analysis with airplanes from airplane database

- Matching Point (Wing Loading, Power Loading)
- Geometry based on selected wing loading
- Maximum takeoff weight
- Market price, computed from geometry and technical choice:
- All performance analyzed (Cruise, Stall, Takeoff, Climb)
- Propulsion based on selected power loading
- Generate a list of engine candidates from the engine database

4. Module: Design \rightarrow To define the best configuration to fulfill the requirements

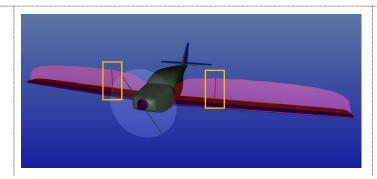


- Optimizes
 - o Airfoil selection
 - Wing planform
- Provides expertise:
 - o Modifications to be made to improve stability
 - Tire selection
 - To select the propeller
- Displays results under the form of:
 - o Graphs
 - Tables
 - o Reports
- Generates automatically a report (txt, doc file format)
- Exports results (csv, txt, doc) and geometry (stl file)


5. Module: Performance Analysis \rightarrow To compute the performance for different flight conditions

- Computes the performance for different flight conditions, defined by mass, altitude, power setting and CG position
- Computes the real impact of one modification made on the aircraft
- Makes multiple runs
- Checks
 - \circ $\;$ Interference between components (structure, systems...) $\;$
 - CG Range
 - \circ $\,$ Completion with regulation
 - Stall departure
 - Instability
- Tracks changes between runs
- Provides expertise:
 - o Modifications to be made to improve stability
- Displays results under the form of:
 - Graphs
 - Tables
 - Reports
- Generates automatically a report (txt, doc file format)
- Exports results (csv, txt, doc) and geometry (stl file)

6. Module: Dynamic Stability \rightarrow To model the dynamic behavior of the aircraft

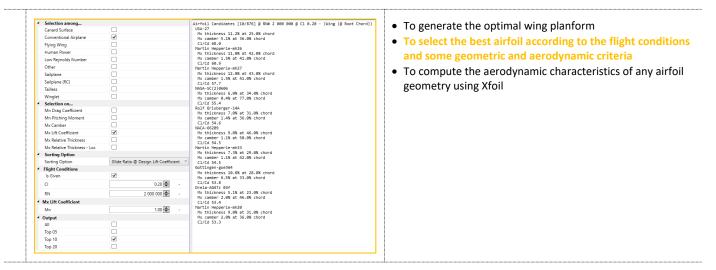


- Computes the dynamic stability of a plane by analyzing:
 - the free response of the plane (eigenmodes)
 - \circ $\;$ the harmonic response to control inputs
 - $\circ \quad$ the step response to control inputs

7. Module: Cost Analysis \rightarrow To estimate R&D, manufacturing, operating costs, market price and breakeven point.

Production Costs (DAPCA Model) Total FTA	1 -	1 -	1 -	1 -	 Based on configuration, size and technology used on the
Total Production	1 -	10 -	100 -	1 000 -	aircraft computer:
Unit Cost	33 852 158 \$	5 441 515 \$	1 398 652 \$	585 380 \$	aircraft, computes:
Total Program Cost Nonrecurring	33 852 158 \$	54 415 151 \$	139 865 185 \$	585 380 446 \$	 Research and Development costs
Development-support	5 263 824 \$	5 263 824 \$	5 263 824 \$	5 263 824 \$	•
Flight-tests	1 052 308 \$	1 052 308 \$	1 052 308 \$	1 052 308 \$	 Production costs
Materials					
Materials	476 050 \$	1 858 670 \$	10 929 047 \$	68 308 753 \$	 Operating costs
Labor					
Engineering	13 273 917 \$	17 525 814 \$	25 155 652 \$	36 559 644 \$	 Estimated market price
Tooling	6 072 402 \$	9 507 709 \$	17 034 372 \$	31 138 936 \$	
Manufacturing	3 488 641 \$	10 404 681 \$	43 098 888 \$	187 488 361 \$	 Breakeven point
Quality Control	499 801 \$	1 490 630 \$	6 174 575 \$	26 860 577 \$	•
Equipment					 Models the influence of technical choices on the costs in
Engine(s)	200 000 \$	1 100 000 \$	10 100 000 \$	100 100 000 \$	interest of teermed endies of the costs in
Propeller(s)	60 000 \$	330 000 \$	3 030 000 \$	30 030 000 \$	general
Avionics	40 000 \$	220 000 \$	2 020 000 \$	20 020 000 \$	Beneral
Interior	40 000 \$	220 000 \$	2 020 000 \$	20 020 000 \$	
Profit					
Production profit	3 385 216 \$	5 441 515 \$	13 986 518 \$	58 538 045 \$	

8. Module: Lift distribution \rightarrow To optimize the wing planform for safety and performance



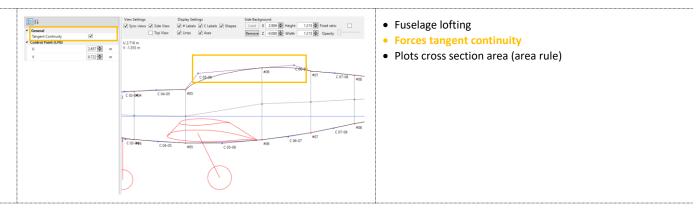
- According to the selected airfoils, the planform of the lifting surface and the flight conditions, computes:
 - Lift distribution
 - Load factor
 - o Position of the maximum lift coefficient
 - o Position of the stall departure
 - $\circ \quad \text{Oswald efficiency factor} \\$
 - Global lift coefficient
- Takes into account the presence of fuselage and external stores

Set of optimization tools

9. Aerodynamics \rightarrow Set of tools to select the best airfoils and wing planform

10. Powerplant \rightarrow List of engine candidates to fulfill the power requirement

	Engine Model	Power (MxC)	Mass	Generates a list of engine candidates to power the aircr
	-	kW	kg	based on the computed power requirement (Design Le
00	Lycoming IO 540-AB1A5	171.511 (6.0%)	200.0	
01	Lycoming O 540-J3C5D	175.239 (8.0%)	176.0	
02	Lycoming LO 360-A1H6	180.099 (10.5%)	297.9	
03	Lycoming IO 540-C4D5D	184.000 (12.4%)	186.8	
04	Lycoming O 540-A1A	186.425 (13.6%)	183.7	
05	Lycoming O 540-A1A5	186.425 (13.6%)	183.7	
06	Lycoming O 540-A1B5	186.425 (13.6%)	184.1	
07	Lycoming O 540-A1C5	186.425 (13.6%)	184.1	
08	Lycoming O 540-A1D	186.425 (13.6%)	184.1	
09	Lycoming 0 540-A1D5	186.425 (13.6%)	184.1	
10	Lycoming O 540-A2B	186.425 (13.6%)	183.7	
11	Lycoming O 540-A4A5	186.425 (13.6%)	183.7	
12	Lycoming O 540-MR5	186 125 (13 64)	18/ 1	


11. Multiple Runs \rightarrow Computations carried out in sequence to reach the best configuration

	Prosent docine · · · ·	x 3.00.00107.001.04
Source Section 2011 (State 100) Section 2011 (State 2011) Section 2011 (State 2011) Section 2011 Sec	Image Line Image Image Image Line Image Ima	[™] [™] [™] [™] [™] [™] [™] [™]
A Arbb Fach Datases Free Free		

- Performs automatically a large number of different configurations by varying some input data
- Defines some limits
- Sorts automatically the results
- Displays results under the form of table
- Generates a .csv file and save it in a specific folder of the airplane dataset

12. 3D Geometry \rightarrow Unique set of features to optimize geometry

13. Design constraints \rightarrow Automatically controls results to meet different types of constraints

A X Airplanes 1 0_DS-02-01* [D2] [S]	2↓		
 Wings Horizontal Tails Vertical Tails 	 Design Constraint Constraint 	Wing Area	
 Vertical fails Fuselages Engines 	Has Lower Limit Has Upper Limit		
 Landing Gear Systems 	Mn	8.500	m ²
 Weight & Loading Performance 			
 Processing Aerodynamics Center of Gravity 			
 Center of Gravity Design Constraints # 1 Wing Area 			
Costs Fudge Factor			
Export Advanced			

- Checks constraints due to the selected regulation:
 - Configuration
 - o Speed
 - Mass
 - Load factors
 - o Takeoff, climb and landing performance
- Imposes some limits in the size of components (the wing area must be higher than 8.5 m² to provide enough surface for solar cells for example)

Integrated expertise

14. Level of stability \rightarrow Provides the user some tips to improve stability

	tise: Rolling moment due to roll rate derivative (Clp) [/rad] -0.567) is in the range of historical values -0.535 to -0.448
	tise: Yawing moment due to roll rate derivative (Cnp) [/rad]
Cnp (-0.015) is out of the range of historical values -0.045 to -0.022
Cnp	To get a more negative value (do the opposite to get a more positive value):
Cnp	- Increase wing aspect ratio
Cnp İ	- Increase wing taper ratio
Cnp	
	- Move the winglets upwards
Cnp	

- Computes all stability derivatives
- Informs the user if there is instability
- Checks the level of stability is within limits (based on historical values)
- Gives the user some tips to improve stability if not within the limits

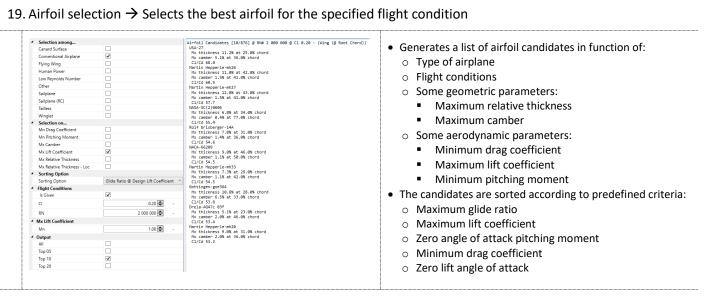
15. Tracks changes \rightarrow Displays only results that have changed from one run to the next

16. Analyzes the results \rightarrow Displays qualitative analysis of results

<pre>Hessage: { HARING } - (0) Hess Factor (Information) - (12) Hess Factor (Information) - (12) Hess (Information) - (12</pre>	 Displays warning messages, if any Displays information messages, if any Provides information about: The compliance with the regulation The CG position The level of stability The way some parameters were computed (propeller efficiency, Oswald efficiency factor)
---	--

17. Checks compliance with regulation \rightarrow Checks and informs if out of the limits of regulation

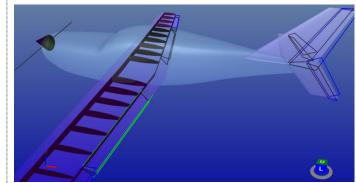
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	
		CS-LSA	CS-VLA	CS-23N	CS-23U	CS-23A	CS-23C	CS-25	FAR-103	FAR-23N	FAR-23U	FAR-23A	FAR-23C	FAR-25	USAR	
	25	13	13	16	16	16	15	11		16		16	15		11	<<< Number of requirements for each regulation
General	Maximum fuel capacity								x							
	Number of engines	×	×	х	х	х	х	X		х	х	х	x	x	х	
	Maximum number of occupants	x	x	х	х	х	х		х	х	х	х	х			
	Type of engine	×	×	x	x	x	x	x		x	x		x	x	-	-
	Maximum operating altitude			х	х	х	х			х	х	х	х			
Mass	Maximum takeoff weight	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Mass	Maximum takeoff weight Minimum weight	x	x	x	x	x	x	-	-	x	x	x	x	-	x	-
	Empty weight	+	×	×	×	×	×		×	x	x	×	×	-	×	-
	Useful weight	x	-	-	-	-	-		×	-		-	-	-	-	-
	Out of Weight	1.0	_	-	_		-			_		-	_	-	-	
Speed	Vs	Т		x	x	x	x			ж	x	x	x			Stall speed determined by certification flight tests
	Vso	x	x						x							Stall speed or minimum flight speed in landing configuration
	V ₅₁	+		-										-		Stall speed or minimum steady flight speed in a specific configurat
	Vr	x	x	x	x	x	x	x		x	x	x	x	×	x	Design flap speed
	Vc	x	×	x	×	×	x	×		х	×	×	×	×	×	Design cruise speed
	Vo	x	x	x	x	x	x	x		x	x	x	x	x	x	Design diving speed
	Vm								×							Maximum speed in level flight with maximum continuous power
		_	_	_	_	_	_	_		_	_	_	_	_	_	
Load factors	n ₁	×	×	x	x	x	x	x		x	x	x	x	x	x	Positive maneuvering load factor
	n _{id}															Landing load factor
Takeoff speed	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1
Takeoff speed	V _R	-	-	x	×	×	x	x		x	x	×	×	×	x	Rotation speed
	V _{LOP}	+	-	-	-	-	-	×	_			-	-	×	-	Lift off speed, speed at which the airplane first becomes airborne
	Vto	+	-	x	×	×	x	x		x	×	×	×	x	-	Final takeoff speed
	V _{CLAEO}	-		x	x	x	x	×		x	x	x	x	×	×	Climb speed, all engine operative
	V _{25m}	x	×	x	×	x				x	x	x			x	Speed above the 15m (50ft) obstacle
Climb	Vz	x	×													Rate of climb
Landing	Vaud	×	×	×	×	×	×	×		x	×	×	×	×	×	Reference landing approach speed


- Checks compliance with regulation regarding:
 - $\circ~$ Maximum fuel capacity
 - $\circ~$ Number of engines
 - Maximum number of occupants
 - Type of engine
 - Maximum operating altitude
 - o Mass
 - Speed
 - Load factors
 - o Takeoff, climb and landing performance

18. Tire selection \rightarrow Selects tire size in function of ground run operation

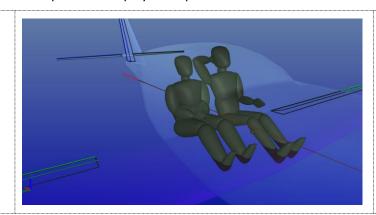
	32 34 36	 Generates a list of tire candidates in function of: Landing gear configuration Maximum takeoff weight Maximum ground speed Runway surface

19. Airfoil selection \rightarrow Selects the best airfoil for the specified flight condition

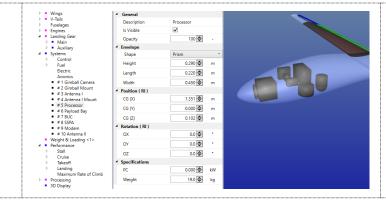

20. Comparative analysis \rightarrow Compares the airplane with its competitors on different criteria

QUALITY	
Symbols	
+ : best plane	
: Worst plane	
AERODYNAMICS	
Friction coefficients (-) - Cruise	
0.00167 0 0.04659	0.00515 -
÷	Cessna-210-G
	PIUMA ALMERICO-12-000ELECTR
Aerodynamic efficiency [Cf(limit) / Cf] (%) - Cruise	
8.9 209.2	62.9
+	Cessna-210-G
	PIUMA ALMERICO-12-000ELECTR
Flat plate area perpendicular to flow (m ²) - Cruise	
0.051 -0 1.719	0.076 r
+	0CEA 311-02-01
	Edgley-Optica-01*
Flat plate width perpendicular to flow (m) - Cruise	
0.226 0 1.311	0.276 r
•	0CEA 311-02-01
	Edgley-Optica-01*
FUEL	
Fuel (I/100km) - Cruise	
4.9 0 83.6	7.3 -
+	Michel Colomban-MC 100-0b
	Cessna-208 F-Caravan
Fuel (I/100km/100kg) - Cruise	
NA	9.1 -

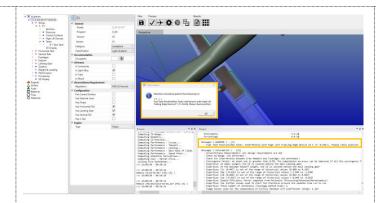
- The current airplane is compared with other airplanes taken from the database. The analysis focuses on:
 - Aerodynamics
 - Fuel consumption
 - CO2 emissions
 - o Mass
 - o Performance
- The best airplane is displayed as well as the worst one
- The current airplane is located between the two limits



21. Aircraft Structure ightarrow Displays structural parts to check for interference between components

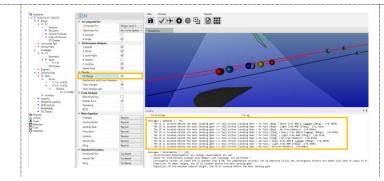

- The structure is generated automatically
 - Some elements of the structure are represented, such as:
 Spars
 - Ribs
 - o Frames
 - Stringers
 - The representation is mainly used to check the absence of interference between components, between the structure and the control surfaces, between the structure and the high lift devices...

22. Occupants \rightarrow Displays occupants to check cabin volume

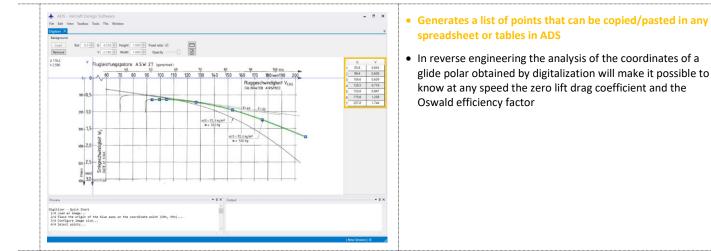

- The occupants are generated automatically
- Controls on measurements:
 - Height
 - o Fatness
 - Shoulder breath
- Controls position and attitude
- Checks interference with the fuselage
- Checks clearance with fuselage
- Checks minimum cockpit size to fit the occupants
- Lists anthropometric characteristics
- Puts in default sitting and standing position

23. Systems \rightarrow Displays systems to check the available volume reserved for them

- The user may define unlimited number of systems
- Each system is defined with:
 - An envelope of different shape (prism, cylinder, cone, sphere) and size
 - $\circ~$ Power consumption
 - Mass


24. Checks interference between components \rightarrow Checks and warns if there is interference

- Warning messages are displayed if exist interference
 - between components:
 - Occupants
 - Tanks
 - Structure
 - High lift devices
 - Control surfaces
 - o ...


25. Checks CG Range \rightarrow Checks the CG position for all load cases

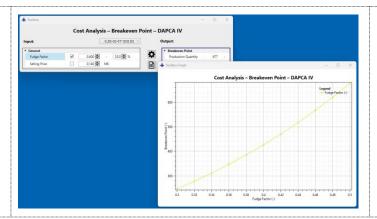
- Checks CG position for all load cases. The CG must be between the limits. If not, warning messages are displayed
- Displays the CG of each component of the airplane (light blue)
- Displays on the mean aerodynamic chord:
 - $\circ~$ The most forward position (red)
 - $\circ~$ The most aft position, neutral point (red)
 - $\circ~$ The true airplane CG (blue)
 - $\circ~$ The default airplane CG (yellow)

Toolbox

26. Digitizer ightarrow Digitizes any curve to retrieve the coordinates of the points that were used to draw it

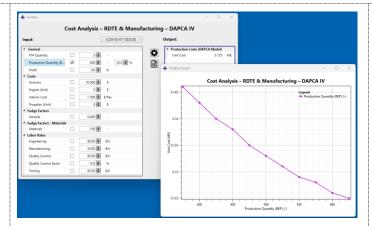
27. Glide Polar Analyzer \rightarrow Analyzes the drag polar of a (motor)glider

	5	R(V)	
	V (km/h)	SR (m/s)	E
1	90	-0.65798	^
2	91	-0.65526	
3	92	-0.65265	
4	93	-0.65015	
5	94	-0.64778	
6	95	-0.64556	
7	96	-0.6435	
8	97	-0.64162	
9	98	-0.63993	Sort by V
10	99	-0.63845	
11	100	-0.63719	↓ Interpolate
Area (m	²) Aspect Ratio (-)	WL (kg/m²) Altitude (m) Compute
9.0	25.00	55.6 🔷 3	00 🔹 Show Graph


- Computes at every speed of the glide polar, from the lower to the upper speed, every 1 km/h, the following information:
 - \circ Total drag
 - $\circ \ \ \text{Glide ratio}$
 - \circ Lift coefficient
 - $\circ \ \, \text{Drag coefficient}$
 - Zero lift drag coefficient
 - $\circ~$ Induced drag coefficient
 - $\circ~$ Osswald efficiency factor

Tools

· Performs a sensitivity analysis and identify the predominant mics – Drag (Zero Lift) – Wing parameters in drag generation, or which parameter should 0_DS-02-01* [D2] [S] be modified as a priority to minimize drag. The analysis can ¢ 100 🗢 358 🚭 be done on the following components: 10.94 25.0 4 % o Airplane 6.0 0 7 💠 – Drag (Zero Lift) – Wir o Wing Empennages Fuselage Landing gear o Floats o Tailboom o Engine o Nacelle Aspec 0 Miscellaneous • A technical note presents the equations used in the computation of drag and lists the references.


28. Aerodynamics / Zero Lift Drag \rightarrow Sensitivity analysis in drag generation

29. Cost Analysis / Breakeven Point \rightarrow Sensitivity analysis in breakeven point determination

• Performs a sensitivity analysis in the determination of the breakeven point.

30. Cost Analysis / RDTE & Manufacturing → Sensitivity analysis on RDTE & manufacturing costs

- Performs a sensitivity analysis and identify the predominant parameters which influence RDTE & manufacturing costs, or which parameter should be modified as a priority to minimize the cost.
- A technical note presents the equations used and lists the references.

31. Mass \rightarrow Sensitivity analysis on mass estimation

Mass – Win	ng – Raymer	 Performs a sensitivity analysis and identify the predominar parameters in mass estimation, or which parameter should
Input: 0.054-01° IX # demail Light Auginar > Dang Light Auginar Light Auginar Althode Dial (Light Auginar) Althode Dial (Light Auginar)<	Max 25 kg Max 25 kg Maxs - Vring - Raymer GS 65 67 68 Mass - Vring - Raymer Mass - Vring - Raymer GS 63 63 63 67 68 Mass - Vring - Raymer S Mass - Vring - Raymer S 0.0 0.7 0.7 6.8 0.7 6.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.7	 parameters in mass estimation, or which parameter should be modified as a priority to minimize the mass. The analysican be done on the following components: Wing Empennages Fuselage Landing gear Floats Tailboom Engine Nacelle Systems
		o Furnishing
		• A technical note presents the equations used in the computation of mass and lists the references.

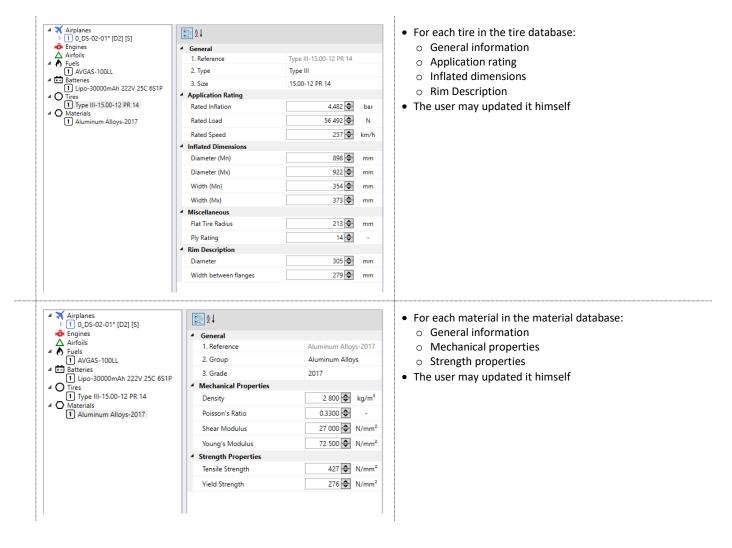
32. Standard Atmosphere \rightarrow Lists the characteristics of the standard atmosphere at a given altitude

	Standard	Atmosph	ere – SI/FPSR		
Input:		o	Output:		
 Flight Conditions 			Physical Properties		
Altitude	574 🗢 m		Density	1.159	kg/r
			Pressure	94593	Pa
			Speed of Sound	337.8	m/
			Temperature	11.3	°C
			Viscosity	1.532E-05	m²/

• Lists the characteristics of the standard atmosphere at a given altitude

Database

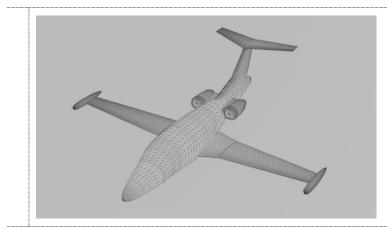
33. Database \rightarrow Airplanes, Engines, Airfoils, Fuels, Batteries, Tires, Materials


🛧 Open Airplane		-	×
List of Classification V Light Airplane Light Business Light Transport Ultralight Unmanned Aircraft Very Light Jet V	0_A 01 M 0_A 01 PA 0_A 01 S 0_A 02 S 0_A 02 S_2 0_Canadair CL415 01 0_DS 01 01 0_DS 02 01 0_DS 02 01_6 0_DS 02 01_MR 0_DS 02 01A		~

- The airplane database is divided in different categories:
 - Light Airplane
 - $\circ \ \ \text{Light Business}$
 - $\circ \ \ \text{Light Transport}$
 - o Ultralight
 - $\circ~$ Unmanned Aircraft
 - Very Light Jet
- For each aircraft in the database:
 - $\circ~$ General information
 - o Geometry
 - Systems
 - Mass
 - Performance
- The database is continuously updated with new airplanes
- The user may updated it himself with his own data

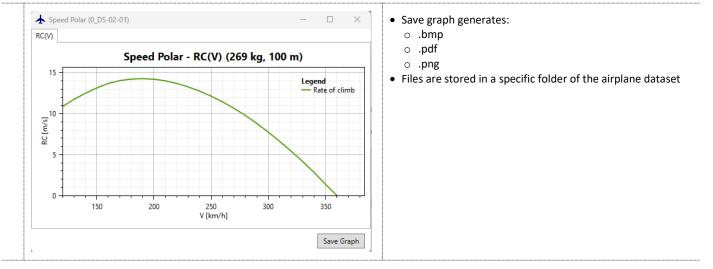
🛧 Open Engine		– 🗆 ×	• The engine database is divided in different categories:
			• Electric
List of engine type	Allison 250 C20B	^	o Piston
~	Allison 250 C30B		○ Turbofan
T 1 1	Austro Engine E4		 Turbojet
Electric	Austro Engine E4P		 Turbopropeller
Piston	Bourget 01		• For each engine in the database:
Turbofan	CF6 80C2B1F		 General information
Turbojet	CF6 80C2B5F		 Geometry
Turbopropeller	CFM56 5A1		o Systems
	CFM56 5A1 F		 Performance
	CFM56 5A3		The database is continuously updated with new engines
	CFM56 5B4	~	
			The user may updated it himself with his own data
🛧 Open Airfoil	•	– o ×	The airfoil database is divided in different categories. Amon
			them:
Series	0001	~	o Eppler
	0002		○ NACA
~	0005		○ NASA
Eppler ^	0006		 Worthmann
Glasgow University	0007		0
Gottingen	0008		For each airfoil in the database:
GU	0008 34		• For each an formation
Hollom	000834		
Lockheed			• Airfoil coordinates
Martin Hepperle	0009		 Aerodynamic characteristics for different Reynolds
NACA	0009_TE		Number and Mach Number
NASA	0010	×	 The database is continuously updated with new airfoils
			The user may updated it himself with his own data
Airplanes 1 0_DS-02-01* [D2] [S]	≜		• For each fuel in the fuel database:
🐵 Engines	 General 		 General information
Airfoils	1. Reference	AVGAS-100LL	 Physical and chemical properties
AVGAS-100LL	2. Type	AVGAS	• The user may updated it himself
 Batteries Lipo-30000mAh 222V 2 	5C 6S1P 3. Grade	100LL	, ,
✓ O Tires	Properties		
1 Type III-15.00-12 PR 14 Materials	Density	0.721 🜩 kg/l	
Aluminum Alloys-2017	Specific Energy	12 222 🗢 W.h/Kg	
Airplanes 1 0_DS-02-01* [D2] [S]			• For each battery in the battery database:
ionu Engines ▲ Airfoils	▲ General	11 20000 11 2001 C	 General information
🔺 🔥 Fuels	1. Reference	Lipo-30000mAh 222V 25C 6S1P	 Electrical properties
AVGAS-100LL	2. Type 3. Subtype	Lipo 30000mAh 222V 25C 6S1P	 The user may updated it himself
1 Lipo-30000mAh 222V 25C	6S1P	3000011A11222V 23C 031P	
1 Type III-15.00-12 PR 14	Capacity Rate	25.0 🗢 C	
Materials Aluminum Alloys-2017 	Capacity Rate (Mx)	25.0 🗢 C	
	Specific Energy	666 🗢 W.h/Kg	
	Specific Power	400 🗢 W/Kg	

Export Functions


34. Airplane Report \rightarrow Airplane report available in .doc, .txt, .csv file format

			DS-02	-01*				
Stability Cost-Market I	Price Cruise			keoff Landing	g Stall	Quality	Statistics	1
Summary Wing I	Horizontal Tail	Vertical Tail	Fuselage	Powerplant	Landing Gea	ar Syste	ems Mas	s
DIMENSIONS, EXTERNAL:								
Model	_		_			0DS-02-	01*	
Type:	Сору					Light Airpla	ane	
Structure	Copy	as csv			Composi	ite & Light A	lloy	
Powerplant	СоруА	ui -		1 Rota	x-Bombardier	Rotax 912-I	JLS	
Length overall	Save					4.9	962 m	
Height overall	Save a					1.0	353 m	
Wing span	SaveA					6.3	360 m	
Wing aspect ratio		s Word				1	0.9 -	
Fuselage length	SaveA	II as Word				4.9	930 m	
Fuselage Mx diameter						0.0	664 m	
Tailplane span						1.3	715 m	
Wheel track						1.1	109 m	
Wheel base						3.0	398 m	
AREAS								
Airplane wetted area						18.0	012 m²	
Wing, true						3.6	697 m²	
Wing, projected						3.0	677 m²	
Ailerons (total)						0.3	223 m²	
Trailing-edge flaps (total)						0.3	341 m²	
Horizontal tail, projected						0.8	309 m²	
Vertical tail, projected						0.4	403 m²	
Elevator (total)						0.3	228 m²	
Rudder (total)						0.1	102 m²	
WEIGHTS AND LOADINGS								
Maximum takeoff weight							8.7 kg	
Empty weight							5.6 kg	
Mx fuel weight							3.1 kg	
Mx landing weight						26	8.7 kg	
						-		

- Airplane report ready to be published
- Airplane report may be:
 - $\circ~$ Copied in the clipboard
 - Copied as csv
 - $\circ~$ Saved as doc
 - Saved as txt
 - Saved as csv
- One file for the whole document
- One file for a specific item
- Files are stored in a specific folder of the airplane dataset
- File path is displayed in the process window



35. 3D-Geometry \rightarrow 3D Geometry may be exported in .stl file format

- One file for the whole geometry
- One file for each component (wing, fuselage...)
- Files are stored in a specific folder of the airplane dataset

36. Graphs \rightarrow Graphs are saved in .bmp, .pdf, .png file format

37. Tables \rightarrow Tables are saved in .csv file format

		ldx(1)			
	RC		v		
1	10.87		120		
2	11.764		130		
3	12.501		140		
4	13.166		150		
5	13.706		160		
6	14.053		170		
7	14.237		180		
8	14.298		190		
9	14.225		200		
10	14.028		210		
	<< <	1 / 1	> >>	Show G Save Ta	

- Save table generates .csv file format:
- Files are stored in a specific folder of the airplane dataset
- File path is displayed in the process window

Customized software

38. Add new modules \rightarrow Great flexibility of the software

- Thanks to its modular architecture, it is very easy to add new modules to the software to meet a specific customer need.
- The Following features have been implemented in ADS following specific request :
 - VTOL
 - o STOL
 - o Seaplane
 - $\circ~$ Solar plane
 - o Airliners
 - Ducted fan

39. Frequent new releases \rightarrow Extremely high responsiveness on the part of OAD

- As soon as an issue is reported, OAD does everything possible to correct it as quickly as possible.
- If a customer wants to see a new feature in the software, OAD reviews the request, and if possible adds it in the next release
- OAD's priority is customer satisfaction

Technical assistance

40. Getting started with the software \rightarrow OAD assists the customer getting started with ADS

- Online training are offered to help the user when getting started with the software
- OAD offers its expertise to verify the work done by the user until he feels comfortable with the software

41. Technical documentation \rightarrow Technical notes and videos accessible directly from the software

TN02-051 – LS Standard Geometry In order to make easier some aerodynamic calcul converted to simple trapezoidal planform. This is List of methods: Trapezoidal x x Tip Based x x ESDU x x x Airbus x Boeing x		 Concise technical notes provide explanations on many to Short videos show how to complete a task Many additional information displayed on the user interfaregarding: Historical values Reference Theory
Trapezoidal		
	The method consists to extend the lines of the leading edge until it meets the centerline of the fusclage. And to do the same for the trailing edge. Sw computed from the contour formed by the red lines For all types of aircraft	
Tip Based		
	The method consists to define the equivalent wing planform with the same area and the same wing tip. S _w computed from the contour formed by the red lines For all types of aircraft Set by default	
ESDU		
The method to define the equivalent wing planfo (Engineering Sciences Data Unit, https://www.es		

42. Technical support \rightarrow OAD may assist the customer at any time

- User may contact OAD at any time for clarification on the algorithms used to solve a problem, the results provided by the software...
- User may ask OAD to perform some work in the frame of consulting

References

43. ADS for everyone → Customers from all horizons: small, medium and large companies, individuals and universities

